Synapse-Specific Regulation Revealed at Single Synapses Is Concealed When Recording Multiple Synapses
نویسندگان
چکیده
Synaptic transmission and its activity-dependent modulation, known as synaptic plasticity, are fundamental processes in nervous system function. Neurons may receive thousands of synaptic contacts, but synaptic regulation may occur only at individual or discrete subsets of synapses, which may have important consequences on the spatial extension of the modulation of synaptic information. Moreover, while several electrophysiological methods are used to assess synaptic transmission at different levels of observation, i.e., through local field potential and individual whole-cell recordings, their experimental limitations to detect synapse-specific modulation is poorly defined. We have investigated how well-known synapse-specific short-term plasticity, where some synapses are regulated and others left unregulated, mediated by astrocytes and endocannabinoid (eCB) signaling can be assessed at different observational levels. Using hippocampal slices, we have combined local field potential and whole-cell recordings of CA3-CA1 synaptic activity evoked by Schaffer collateral stimulation of either multiple or single synapses through bulk or minimal stimulation, respectively, to test the ability to detect short-term synaptic changes induced by eCB signaling. We also developed a mathematical model assuming a bimodal distribution of regulated and unregulated synapses based on realistic experimental data to simulate physiological results and to predict the experimental requirements of the different recording methods to detect discrete changes in subsets of synapses. We show that eCB-induced depolarization-induced suppression of excitation (DSE) and astrocyte-mediated synaptic potentiation can be observed when monitoring single or few synapses, but are statistically concealed when recording the activity of a large number of synapses. These results indicate that the electrophysiological methodology is critical to properly assess synaptic changes occurring in subsets of synapses, and they suggest that relevant synapse-specific regulatory phenomena may be experimentally undetected but may have important implications in the spatial extension of synaptic plasticity phenomena.
منابع مشابه
Effect of Sulpiride on Dopaminergic Synapse of Dorsal Hippocampus of Morphine-Treated Rats
Background: As previous studies show, several effects of morphine are induced by the dopaminergic system. Sulpiride is a dopamine D2 receptor (DAD2) antagonist widely used in clinics to treat DArelated disorders. DAD2 receptors are abundant at hippocampal cornu ammonis (CA1). Objectives: This study aimed to investigate the possible interaction of morphine and sulpiride on DA synapses in CA1...
متن کاملFacilitation and depression at single central synapses
Using whole-cell recording from CA1 hippocampal pyramidal neurons and minimal stimulation of Schaffer collaterals, we have studied what seem to be single synapses. Although the transmission at a putative single synapses is quite unreliable, the synapse can be made to release transmitter reliably in response to the second stimulus in a pair of stimuli that re presented in rapid succession (e.g.,...
متن کاملSynapse- and stimulus-specific local translation during long-term neuronal plasticity.
Long-term memory and synaptic plasticity require changes in gene expression and yet can occur in a synapse-specific manner. Messenger RNA localization and regulated translation at synapses are thus critical for establishing synapse specificity. Using live-cell microscopy of photoconvertible fluorescent protein translational reporters, we directly visualized local translation at synapses during ...
متن کاملPostsynaptic Recordings at Afferent Dendrites Contacting Cochlear Inner Hair Cells: Monitoring Multivesicular Release at a Ribbon Synapse
The afferent synapse between the inner hair cell (IHC) and the auditory nerve fiber provides an electrophysiologically accessible site for recording the postsynaptic activity of a single ribbon synapse. Ribbon synapses of sensory cells release neurotransmitter continuously, the rate of which is modulated in response to graded changes in IHC membrane potential. Ribbon synapses have been shown to...
متن کاملIlluminating Synapse-Specific Homeostatic Plasticity
Homeostatic plasticity can globally scale the strength of all synapses on a neuron, but whether a similar bidirectional homeostatic scaling can also operate independently at individual synapses was unknown until now. Here, Man and colleagues demonstrate that single synapses show an input-specific homeostatic downregulation of synaptic efficacy in response to increased activity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017